Strong asymptotic independence on Wiener chaos

نویسندگان

  • Ivan Nourdin
  • David Nualart
  • Giovanni Peccati
چکیده

Let Fn = (F1,n, ...., Fd,n), n > 1, be a sequence of random vectors such that, for every j = 1, ..., d, the random variable Fj,n belongs to a fixed Wiener chaos of a Gaussian field. We show that, as n → ∞, the components of Fn are asymptotically independent if and only if Cov(F 2 i,n, F 2 j,n) → 0 for every i 6= j. Our findings are based on a novel inequality for vectors of multiple Wiener-Itô integrals, and represent a substantial refining of criteria for asymptotic independence in the sense of moments recently established by Nourdin and Rosiński [9].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic independence of multiple Wiener-Itô integrals and the resulting limit laws

We characterize the asymptotic independence between blocks consisting of multiple Wiener-Itô integrals. As a consequence of this characterization, we derive the celebrated fourth moment theorem of Nualart and Peccati, its multidimensional extension, and other related results on the multivariate convergence of multiple Wiener-Itô integrals, that involve Gaussian and non Gaussian limits. We give ...

متن کامل

Wiener Way to Dimensionality

This note introduces a new general conjecture correlating the dimensionality dT of an infinite lattice with N nodes to the asymptotic value of its Wiener Index W(N). In the limit of large N the general asymptotic behavior W(N)≈Ns is proposed, where the exponent s and dT are related by the conjectured formula s=2+1/dT allowing a new definition of dimensionality dW=(s-2)-1. Being related to the t...

متن کامل

Universités de Paris 6 & Paris 7 - CNRS ( UMR 7599 ) PRÉPUBLICATIONS DU LABORATOIRE

We propose a statistical index for measuring the fluctuations of a stochastic process ξ. This index is based on the generalized Lorenz curves and (modified) Gini indices of econometric theory. When ξ is a fractional Brownian motion with Hurst index α ∈ (0, 1), we develop a complete picture of the asymptotic theory of our index. In particular, we show that the asymptotic behavior of our proposed...

متن کامل

Frame-independence of the Inhomogeneous Mixmaster Chaos via Misner-Chitré-like variables

We outline the covariant nature,with respect to the choice of a reference frame, of the chaos characterizing the generic cosmological solution near the initial singularity, i.e. the so-called inhomogeneous Mixmaster model. Our analysis is based on a ”gauge” independent ADM-reduction of the dynamics to the physical degrees of freedom. The out coming picture shows how the inhomogeneous Mixmaster ...

متن کامل

Integration of Brownian vector fields

Using the Wiener chaos decomposition, we show that strong solutions of non Lipschitzian S.D.E.'s are given by random Markovian kernels. The example of Sobolev flows is studied in some detail, exhibiting interesting phase transitions. Résumé. Intégration de champs de vecteurs browniens. En utilisant la décomposition en chaos de Wiener, nous montrons que les solutions fortes d'E.D.S. non Lipschit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014